If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2=5625
We move all terms to the left:
n^2-(5625)=0
a = 1; b = 0; c = -5625;
Δ = b2-4ac
Δ = 02-4·1·(-5625)
Δ = 22500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{22500}=150$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-150}{2*1}=\frac{-150}{2} =-75 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+150}{2*1}=\frac{150}{2} =75 $
| 10-q=4q-10 | | 2(x+4)=29 | | v+4.91=6.96 | | 7m^2+72m+81=0 | | n^2=784 | | 5(x-4)+3x=8 | | n^2=441 | | -6.5n=-58.5 | | 4/3c-2=2 | | 18+(3x-2)+X=180 | | n^2=841 | | 4x-2(-x-2)=52 | | n^2=2809 | | 3(4+7x)=-21 | | -7x+7(2x-5)=14 | | n^2=4761 | | b-10=b-10 | | 2c-8/3=2 | | 3x+28=3x+10 | | 8x+7x-3x= | | 129-v=217 | | 2(3x4)=6x+8 | | J+3/4=j/7 | | 23x^2=31 | | 48/40x-28/40=51/40 | | 3-7(0.5)=7+x | | -4x+7(-2x+2)=122 | | -14x-12=54 | | -6x+5(3x+13)=-25 | | m/6-31/6-4m/7-36/7=2 | | 0x=36 | | -4x+3(-7x-8)=176 |